Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 172: 173-179, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28499908

RESUMO

Trypanosoma cruzi is a parasitic protozoan responsible for Chagas disease. Seven different Discrete Typing Units (DTUs) of T. cruzi are currently identified in nature: TcI-TcVI, and TcBat whose distribution patterns in nature, hosts/reservoirs and eco-epidemiological importance are still little known. Here, we present novel data on the geographic distribution and diversity of mammalian hosts and vectors of T. cruzi DTUs TcIII and TcIV. In this study, we analyzed 61 T. cruzi isolates obtained from 18 species of mammals (five orders) and two Hemiptera genera. Samples were collected from five Brazilian biomes (Pantanal, Caatinga, Cerrado, Atlantic Rainforest, and Amazon) previously characterized as Z3 or mixed infection (TcI-Z3) by mini-exon gene PCR. To identify TcIII and TcIV genotypes, we applied restriction fragment length polymorphism analysis to the PCR-amplified histone 3 gene. DTUs TcIII and TcIV were identified in single and mixed infections from wide dispersion throughout five Brazilian biomes studied, with TcIV being the most common. Pantanal was the biome that displayed the largest number of samples characterized as TcIII and TcIV in single and mixed infections, followed by Atlantic Rainforest and Amazon. Species from the Didelphimorphia order displayed the highest frequency of infection and were found in all five biomes. We report, for the first time, the infection of a species of the Artiodactyla order by DTU TcIII. In addition, we describe new host species: five mammals (marsupials and rodents) and two genera of Hemiptera. Our data indicate that DTUs TcIII and TcIV are more widespread and infect a larger number of mammalian species than previously thought. In addition, they are transmitted in restricted foci and cycles, but in different microhabitats and areas with distinct ecological profiles. Finally, we show that DTUs TcIII and TcIV do not present any specific association with biomes or host species.


Assuntos
Ecossistema , Hemípteros/parasitologia , Mamíferos/parasitologia , Trypanosoma cruzi/genética , Animais , Brasil/epidemiologia , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia , Genótipo , Trypanosoma cruzi/classificação
2.
PLoS Negl Trop Dis ; 8(5): e2878, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24854494

RESUMO

BACKGROUND: The new epidemiological scenario of orally transmitted Chagas disease that has emerged in Brazil, and mainly in the Amazon region, needs to be addressed with a new and systematic focus. Belém, the capital of Pará state, reports the highest number of acute Chagas disease (ACD) cases associated with the consumption of açaí juice. METHODOLOGY/PRINCIPAL FINDINGS: The wild and domestic enzootic transmission cycles of Trypanosoma cruzi were evaluated in the two locations (Jurunas and Val-de Cães) that report the majority of the autochthonous cases of ACD in Belém city. Moreover, we evaluated the enzootic cycle on the three islands that provide most of the açaí fruit that is consumed in these localities. We employed parasitological and serological tests throughout to evaluate infectivity competence and exposure to T. cruzi. In Val-de-Cães, no wild mammal presented positive parasitological tests, and 56% seroprevalence was observed, with low serological titers. Three of 14 triatomines were found to be infected (TcI). This unexpected epidemiological picture does not explain the high number of autochthonous ACD cases. In Jurunas, the cases of ACD could not be autochthonous because of the absence of any enzootic cycle of T. cruzi. In contrast, in the 3 island areas from which the açaí fruit originates, 66.7% of wild mammals and two dogs displayed positive hemocultures, and 15.6% of triatomines were found to be infected by T. cruzi. Genotyping by mini-exon gene and PCR-RFLP (1f8/Akw21I) targeting revealed that the mammals and triatomines from the islands harbored TcI and Trypanosoma rangeli in single and mixed infections. CONCLUSION/SIGNIFICANCE: These findings show that cases of Chagas disease in the urban area of Belém may be derived from infected triatomines coming together with the açaí fruits from distant islands. We term this new epidemiological feature of Chagas disease as "Distantiae transmission".


Assuntos
Animais Selvagens/parasitologia , Doença de Chagas/transmissão , Doença de Chagas/veterinária , Euterpe/parasitologia , Triatoma/parasitologia , Trypanosoma cruzi/isolamento & purificação , Animais , Brasil/epidemiologia , Doença de Chagas/epidemiologia , Doenças do Cão/parasitologia , Cães , Manipulação de Alimentos , Humanos , Prevalência , População Rural , Análise Espacial , Trypanosoma cruzi/genética , População Urbana
3.
PLoS One ; 8(7): e67463, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861767

RESUMO

Little is known on the role played by Neotropical wild carnivores in the Trypanosoma cruzi transmission cycles. We investigated T. cruzi infection in wild carnivores from three sites in Brazil through parasitological and serological tests. The seven carnivore species examined were infected by T. cruzi, but high parasitemias detectable by hemoculture were found only in two Procyonidae species. Genotyping by Mini-exon gene, PCR-RFLP (1f8/Akw21I) and kDNA genomic targets revealed that the raccoon (Procyon cancrivorus) harbored TcI and the coatis (Nasua nasua) harbored TcI, TcII, TcIII-IV and Trypanosoma rangeli, in single and mixed infections, besides four T. cruzi isolates that displayed odd band patterns in the Mini-exon assay. These findings corroborate the coati can be a bioaccumulator of T. cruzi Discrete Typing Units (DTU) and may act as a transmission hub, a connection point joining sylvatic transmission cycles within terrestrial and arboreal mammals and vectors. Also, the odd band patterns observed in coatis' isolates reinforce that T. cruzi diversity might be much higher than currently acknowledged. Additionally, we assembled our data with T. cruzi infection on Neotropical carnivores' literature records to provide a comprehensive analysis of the infection patterns among distinct carnivore species, especially considering their ecological traits and phylogeny. Altogether, fifteen Neotropical carnivore species were found naturally infected by T. cruzi. Species diet was associated with T. cruzi infection rates, supporting the hypothesis that predator-prey links are important mechanisms for T. cruzi maintenance and dispersion in the wild. Distinct T. cruzi infection patterns across carnivore species and study sites were notable. Musteloidea species consistently exhibit high parasitemias in different studies which indicate their high infectivity potential. Mesocarnivores that feed on both invertebrates and mammals, including the coati, a host that can be bioaccumulator of T. cruzi DTU's, seem to take place at the top of the T. cruzi transmission chain.


Assuntos
Doença de Chagas/transmissão , Doença de Chagas/veterinária , DNA de Cinetoplasto/classificação , Procyonidae/parasitologia , Trypanosoma cruzi/classificação , Trypanosoma cruzi/genética , Animais , Brasil/epidemiologia , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia , Impressões Digitais de DNA , DNA de Cinetoplasto/genética , Reservatórios de Doenças , Éxons , Cadeia Alimentar , Genótipo , Filogenia , Clima Tropical , Trypanosoma cruzi/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA